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An optimal control problem is analyzed for dynamic systems with random pert- 
urbations. Control performance is evaluated by the magnitude of the mean 
value of a functional on the system’s motion trajectories, The optimal controls 
are synthesized by solving a parabolic semilinear partial differential equation 
(the Bellman equation). A method is suggested for solving this equation (and 
the synthesis problem), based on the calculation of successive approximations. 
It is shown that the suboptimal systems constructed in such a way coincide asy- 
mptotically with the optimal system. The method suggested can be used for 
solving the synthesis problem in systems with bounded controls. The method’s 
effectiveness is illustrated by an example. 

l. Statement of the problem, Weshallanalyzedynamicsystems 
whose behaviors can be described by a vector-matrix differential equation of form 

2. = 6 (3, t) + E (t) u (t) + aL (z, t) 5 (t), t = (21, . . ., 4 (1.1) 

Here x is the system’s phase coordinate vector, U is the m -dimensional control vec- 
tor, E (t) in the n-dimensional vector of random perturbations of white noise type 
with independent components, zero mean and unit intensity, 6 (z, t) is a vector-valu- 
ed function of the phase coordinates and of time t, and i? (t) and Z (2, t)are (n Xm)- 
and (Nan) - matrices whose elements depend on t and on (5, t) , respectively. The re- 
quirements on the functions f, (r, t), 5 (t) and Z (2, t) are given indetail below. 
Here we merely note that these functions are always assumed to be such that a unique 
solution z (i!) of the stochastic Eq. (1.1) exists for t > &I, satisfying the condit- 
ion 5 (to) = x0 and understood in at least the weak sense (see [13), 

The problem is to find a vector-valued control function u with values in some 
closed bounded domain U, that would ensure the minimum of a certain performance 
index of the system (the optimality criterion), which we take in the form 

(1.2) 

Here 111 denotes the mean, [0, 2’1 is the time interval on which the system’s opera- 
tion is to be analyzed, and 01 and I# are scalar penalty functions whose actual 
forms are determined by the nature of the problem being solved (see below for the 
requirements on or and 9 ). The unkown vector-valued function u* minimizing 
(1.2) must at each instant t be expressed in terms of the current values of the phase 
coordinate vector and of time t , i. e., u* = u* (t, z (t))(the synethesis pr&.lem). 
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According to the dynamic programming method [2] the solving of the problem 
posed ls equivalent to solving the hellmars equation which for system (1.1) and criter- 
ion (1.2) has the form [33 

_~=~T(~,t,~++T~ C{~,t)ci~(+,t)-$&~+ i (1.3) 

n.lY.l; 
[ 

01 (x, a) + uTaT (t) -g- I 
In writing (1.3) it is assumed that alI the stochastic integrals are under&x@ in It& 
sense, that the operator f9 f dz ls a column vector with components (r9 f Gkr, . . ., 

~3 / &c,,), and that the superserlpt T denotes transposition, The function P (hence- 
forth called the loss function) characterizes the opergttng performance of the optimal 
system and by definition equals 

Here M((*)IX@)= 2) denotes the averaging of f* ) over all poesibt 
of the controlled random process x (8) (8 > r), starting from point x when s = t. 

From (1.4) it follows that 
F (x, T) = tp (x) (1.5) 

Reversing time by means of the ~bs~~~~ z = T - t, Q. (1.3) and condition 
(1.5) for function F (x, z) are transformed to 

LF = - mi; II co] (x, u) -$- EGTCT -g-J (1.6) 

L 
as 

=-~+b,[r,r)~iaij(X,.C)- axi asj 

b&,+=F&,T-zz), c(z)=a(T-z) 

F (xv 0) = ‘iit (4 Cl*71 

Here aij (z, ;c) is a general element of matrix l/s Z (2, T - 5). GT (2, T - z); 
summation from 1 to n is assumed over repeated indices. Taking the quantity 35’ I 

&a as known and carrying out the minimization in (1.61, we have 

LF = CD1 (x, z, 8F i ax) (1.8) 

The function 
u* = up (5, z, G’F / 6’s) (1.9) 

obtained here, satisfying the condition 



syntbetir of optimal stochastic control systems 

solves the synthesis problem (after I$. (1.8) has been solved). The forms of functions 
@ and cp depend cxr 01 and on domain u. 

E x a m p 1 e 1. Let o1 (z, U) = o (2) f uTBu, where B is a positive-defin- 
ite (mX n)-matrix for any t E E,, and ZE IO, T]. Controls u are not bound- 
ed (u= &A Then (B-l is the matrix inverse to B) 

cp”-- -+F$$ Qz =-o(c)+-li_*+J~ 

E x a m p 1 e 2. Let 61~ (z, u) = o (z) and u be an m -dimensional parall- 
elepiped: fusl< uijl,i=i ,..., m. Inthiscase[4] 

where sign A and 1 A 1 are matrices formed from A by replacing aif by sign uli 
and by I aij I and (r+ . . ., uOmj is a diagonal matrix. 

E x a m p 1 e 3. Let or (x, u) = o (z) and u be an m-dimensional sphere of 
radius N . Then 

2. Successive approxfmationr Ifthematrix ii&t) in(l.l) 
is nonsir@ar for any (z, t) E & x lo, T], then tie Bellman Eq. (1.8) is a para- 
bolic semiltnear inhomogeneous equation. We rewrite it as 

LF= -w(i)+@(2,T,dF/dz), F(s,O)=q+) (2.1) 

We shall seek the solution by the method of ~cc~veappr~imati~~~~ard’s method; 
see 151). found recurrently by the following scheme: 

LF, = co (z), Fo lx, 0) = 9 (4 (2.2) 

Lh&, = -63 (z) i- @ (2, z, @3FN f 84, FN+1 (5, 0) = 9 (4 12.31 

N = O,f, .., 

Here, simultaneously with the functions Fe, pi, . . . we find the functions 

UN fx, ‘@ = Q, (2, 7, dF.v I dx), N = 0, 1, 2, .** (2.4) 

which permit us to synthesize systems close to optimal. Such a method of approximate 
synthesis has already been used repeatedly, beginning with [6,7]. Control problems 
for forces small in ~g~~de were examined in [7]. Such systems were later called 
weakly controllable [8]. In this case the nonlinear summand in the Bellman equation 
contains a small parameter Q, = es, which allows us to stay with low order approx- 
imations for the synthesis. Error estimates of the method are shown in [9]. 

The present paper’s purpose is to establish convergence conditions for procedure 
(2.3) when the nonlinear term @ is not small, In this case the suboptimal system syn- 
thesized on the basis of (2.4) can turn out to be near-optimal only for large 1L’ ; there- 
fore, the need arises to investigate the asymptotic behavior of Fn;(x, T) and UN(X, T) 
as iL’ -+ 00. Such an investigation was made in [6] for a bounded phase space, using 
the maximum principle for the solutions of parabolic equations with bounded norm. 
Below we use estimates of the fundamental solution in unbounded domains, enabling 
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[ 
aFN-1 @b-i)-@ 7l,u, 7 ( )I dq 

(formula (3.7) is unconditionally valid by virtue of (3.3); (3.8) is true only under the 
condition that an inequality of type (3.3) (or, at least, (3.6)) is fulfilled for the der- 
ivatives dFN / &q , which, as shown below, does obtain). The solutions FN (N = 
O,l, . ..) are twice contiruuusly differentiable with respect to variable 2 , and the 

derivatives dFN / ax, and d2FN / dx,axj can be computed by differentiating the 
right- hand sides of (3.7) and (3.8) under the integral sign. 

3) The following inequalities are valid (for any I. < a from (3.1) ): 

1 G (x, ‘G ?, (J) I\< KS (Z - a)*/2 exp 
C 

(3,9) 

I 
ac (2, Z; 7j, a) 

- ‘:;I-_ t)?r ] 

azi I 
Q KS (Z - o)++r)/sexp 

L 
1&-Tjp - 
4(t---0) I 

(3.10) 

Results l)-3) are valid for the linear equations of successive approximations (2.2) 
and (2.3). Returning now to the original nonlinear bellman Eq. (2.1) and to the synth- 
esis problem, we look at two stages of the solving of the general problem. First, using 
the majorant bounds (3.9) and (3.10) for the fundamental solution we prove the 
convergence as N -+ 00 of the successive approximations FN (z, z) determined from 
(2.2) and( 2.3), to the solution of the bellman Eq. (2.1) (the existence and the uniqueness 
of thesolution of ( 2.1) can be proved simultaneously). After this we show that the sub- 
optimal systems constructed in conformity with control laws (2.4) are equivalent, asy- 
mptotically as N+ 00 , to the optimal system. 

‘. First of au we prove theuniformconvergence of the sequence of functions Fa 
(5, $7 F, (+, ~1, . . ., determined by the recurrence formulas (3.7) and (3.8), as well 
as of their partial derivatives aFN(x, T) /‘ax, (N = O,l,Z, . ..). To do this we 
form the differences 

QN = FN+I (z, 7) - FN (Xv r> = (do s G (5, 7; 7, 0) X 
(3.11) 

0 En 

(3.12) 

(in the latter formulas we can take N = 0, 1,2, . . . , if we agree that aF_r / &r, = 
0). Using (3.4), for (3.11) and (3.12) we have the inequalities 
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Formulas (3.13). (3.14) and (3.9). (3.10) enable us to find bounds for the differences 
(3.11) and (3.12) recurrentg. For this it is necessary only to estimate 1 dP,, / i%q 1. 
Here a bound of type (3.3) is valid, i. e. 

(3.15) 

Indeed, since when h > o 

-&s+hltlI]drlQKI, (3.16) 

for the derivative obtain, with due regard to (3.3), (3.7). (3.9) and 
(3.10), 

~$$+~~Ks{j r-(nil)lterp[-~[~--‘l(P+~l~l~d~+ (3.17) 
n 

7 

(r - G)-(*+~)/~ exp 
I 
- A ‘,‘I ,” ‘s + h 1 q I] dq} < 

XIK& (z-“r + 2r’9 ehlxi 

Acting analogously and keeping in mind the inewiity 

and (3.4). from (3.12) and (3.17) we obtain 

_ a) ( +0/z (‘.f% + 23’/‘) x -.” 

+ h I q I] dq d nKIK~K~K~ehlri (i + t) R 

whence, by vitue of the bamdedness of T ) we arrive at (3.15) . 
Using (3.15) and applying formulas (3.13) and (3.14) repeatediy, we can obtain 

the following bounds for differences (3.11) and (3.12) for an arbitrary number N > 1 
(I? (a) is the gamma-function): 

Formulas (3.18) and (3.19) are proved by induction on N. The estimates obtained 
show that the sequences of functions 
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F (2, z) =$M, FN (5, z), Wi (2, z) -1352 ~FN (z, r) I hi 

Uniform convergence in any bounded region in Q obtains for the partial sums of the 
series in the right hand side of(3.20), while in (3.21) only the sums of the summands 
beginning with the second converge uniformly. ?he first sumrnand, according tof3.17) 
is majorized by a function having a singularity at z = 0. However, it is easy to see 
that this ~n~~~ty is integrable and, therefore, we can pass to the limit in (3.6) and 
in the formula obtained by di~e~ntia~g (3.81 with respect to SC As a result we 
obtain 

whence it follows that W&, 7) = 4F (z, T) f dot fi = 1,2, . . .) n), and, con- 
sequently, the l&nit function F fs, Z) satisfies the equation 

which is equivalent to the original Bellman Eq, (2.11, as is easily verified 
differentiation with the use of (3.5). 

(3.221 

bY a 

Thus, we have proved the existence of a solution of Eq. (2, I). From the proof it 
follows #at the solution F (5, zf and its derivatives +W / &, have the majorants 

(3.23) 

everywhere in St. Using (3.23) we can prove the uniqueness of the solution of.( 2.1). 
Indeed, admitting the existence of two solutions FX and Pa of Es. (2.1) (or (3.2311, 
for the difference tT = FI - Pn we obtain the equation 

z 

V(2, r) = da s 5 dF1 G(r,r:9.~)[(D(q,o,~]--[(rl~bl~ aq )I 
0 En 
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which with due regard to (3.4) allows us to write 

whence by arguments analogous to those above for functions FN it is easy to obtain 
the following bound for the difference V = Fl - Fn : 

1 V(z, T)( <KJP3c“%w~ 

pi2 

rw/2+11 

valid for any N. Hence it follows that V(r, 7) z 0, i. e. , F, (z, z) = F&z, T). 
Thus we have proved that the succ~ve approximation6 F,, (z, T), F1 (z, T), . . ., 
determined by the recurrence formulas (2.2) and (2.3). converge, asymptotically as 

N-t-s to the solution of the Rellman Eq. (2.11, w&h exists and ias unfque. 
2’ . We turn to the synthesis problem. Above, for the ayntheais of the control 

system we suggested the use of function8 UN (z, z) defined by (2.4). By Hrq(X, 7) 
we denote funcffonal(l.2) computed on the trajectories of system ( 1.11, passing throu- 
gh point X at instant t = T - IY under control u = UN (it is implicit that the 
lower bound of the tntegral in the right-hand side of (1.2) equal8 t 1. Function HN 
(G 7) determlnes the performance of control UN (X, T). It satisfies the linear equat- 

ion 
LHN = --0 (z) - u$GG’HN / do, HN(x, 0) = 9 (x) (3.24) 

With due regard to the inequality- Z&C* ~FN / 8% = CD (z, 7, ~FN/&), from(2.3) 

and (3.24) it follows that the difference &(X, z) = F&X, r) - HN (X, r) Mirfies 
the equation 

LNAN sz LAN + UN~C~~AN /&T = CI, (x, Z, dF~_,j 8~) - (3.25) 

@(XV Z, wN/w &(X70) 9 0 

Since for large N the right hand side of (3.25) is small (see (3.4) and (3.19) 

I nKKsK N-XT("-1)/z 
EN = 

r ((N+ 1) i2) 

(3.26) 

and &rce the initial conditions are zero, we can expect that the difference AN (X, z), 
as a soluttan of Eq. (3.25), is of the same order, i. e. , 

(3.27) 

When (as in Example 3) the functions uN(X, r) are bounded and smooth, ensuring the 
HGlder - Cawty Of&@!cO8ffi~ddpatOr LN, th6Opetabr LN, jut as 

both L and the inequaltty (3.27), is an elementary consequence of formula@ (3.71, 
(3.9) and (3.26). If, however, the UN(X, x.) are disconUnuous functions (but with- 
out singuladti~, e.g., such as those in Example 2). then inequality (3.27) fofLows 
from Theorem 2 in [ll]. 

From the convergence of series (3.20) it follows that 1 F (2, Z) - FN 6 Z> 1 < 
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e> R; ehlxl (E& + 0 as N-t CQ), whence with due regard to the inequality 

IF- 
~~ I< [ F - FN 1 + 1 FN - HN 1 we finally obtain 

i F (T 4 - HN (t, z) 1 < eNK6eh’X’ 

(EN = max (&, &), Kg = max (Kk K;)) 

Formula (3.28) proves the asymptotic (as N + co) optimality of 

(3.28) 

the sub-optimal syst- 
ems constructed with the use of control laws UN (2, r) computed by the recurrence 
formulas (2.2) - (2.4). 

N o t e 1. If the coefficients of operator L are not bounded in 62, then, in 
general, bounds (3.9) and (3.10) are false. However, it can happen that in this case 
the problem admits of reduction to the case considered above by a certain change of 
variables, If, for instance, the coefficients bi(Z, t) in (1.1) depend linearly on z 
(i.e., vector 71 (2, t) = B(t)s, where B (t) is an (12 X n)- matrix depending only on 

t ), then the change of variables y = z-1 (t, to) z (2 (t, to) is the timdamental mat- 
rix of system 3’ = B (t)z) eliminates the unbounded coefficients in operator L ( in 
the new variables y), which permits us to investigate such systems by the methods in 
Sect. 3. 

N o t e 2. The condition of uniform Lipschitx - continuity (3.4), used in the 
calculations in Sect. 3, is not fulfilled for the function @ (5, z, aF / 32) of Example 
1 (where instead of (3.4) we have 

I @ (5, z, 0) - @ (2, z, v”) J < K 1 u - zf’ 1 2, 

It can be shown that in this case the arguments made in Sect. 3 are not violated if the 
restriction (3.9) on the growth of functions o and rl, is replaced by the requirement 
I 0. (4 It I$ (4 I < K, + K, I .z I’. 

Ex-.a m p 1 e 4. We illustrate the effectiveness of the proposed method by ex- 
ample of a one-dimensional control problem for which the exact solution is known. 
Let the control system be described by the scalar equation 

5’ = 11 + E W, Mk WE (t - ~1 = a6 (~1, u Ed [a, PI 
(6 (t) is the delta-functions and the point u = 0. is located inside the segment kz, 81). 

In this case the Bellman Eq. (1.3) has the form ($ (2) = 0) 

ar; 
x = 0 (3) + min 

u=.[a, Bl 

It was solved in [12]. Here we restrict our consideration to the symmetric problem 
when o(z) is an even function having a minimum at z = 0 and u = 0 is the mid- 
point of segment [a, 81, i.e., a =--u. and 8 = uO, In this case the optimal con- 
trol is 11*== --&ns, and the solution F(z, z) of the Bellman equation is an even 
function of z and for z > 0 is determined by the formula [12] 
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Turning to the calculation of the successive approximations, we note that all the funct- 
ions F,, PI, . . . are even in the variable 2. Therefore, any approximate control( 2.4) 
coincides with the optimal a* and the method’s effectivenest can be evaluated from 
the deviation of the successive approximations F,, F,, . . . from the exact sohstion. 
Selecting a quadratic penalty function o(z) = ~2, for the fiat- approximations we 
obtain the expressions 

Figure 1 showt the functions Fo, PI and F computed for u0 = or = ‘C = 1. We 
see that 

Fig. 1 

i. e., even the second approximation yields a satis- 
factory approximation to the exact soiutton. The ex- 
ample considered shows that the actual convergence 
of the successive approximations to the solution of the 
Bellman equation can take place more rap&&y than 
the theoretical one which is eattmated by formulas 
(3.18) and (3.20). This face is a consequence of 
the grossness of the bounds (3.9) and (3.10) of the fun- 
damental solntion, on which we have baaed the proof 
of the convergence of the method of succeaafve approx- 
imations in Sect. 3. 

The author thanks V.B. Kotmanovskit for discuss- 
ing the paper’s resul& 
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