UDC 62-50

SYNTHESIS OF OPTIMAL STOCHASTIC CONTROL SYSTEMS BY THE
METHOD OF SUCCESSIVE APPROXIMATIONS

PMM Vol, 43, No, 1, 1979, pp. 7-16
G, E, KOLOSOV
(Moscow)
(Received March 21, 1978)

An optimal control problem is analyzed for dynamic systems with random pert-
urbations, Control performance is evaluated by the magnitude of the mean
value of a functional on the system's motion trajectories, The optimal controls
are synthesized by solving a parabolic semilinear partial differential equation
(the Bellman equation). A method is suggested for solving this equation (and
the synthesis problem), based on the calculation of successive approximations,
It is shown that the suboptimal systems constructed in such a way coincide asy-
mptotically with the optimal system. The method suggested can be used for
solving the synthesis problem in systems with bounded controls. The method's
effectiveness is illustrated by an example,

1, Statement of the problem, Weshall analyze dynamic systems
whose behaviors can be described by a vector-matrix differential equation of form

S=b@ ) Felu@®)+a@NE@), o=(a ..., 2 (@D

Here z is the system's phase coordinate vector, & is the 7 -dimensional control vec-
tor, & (f) in the n~dimensional vector of random perturbations of white noise type
with independent components, zero mean and unit intensity, b (z, £) is a vector-valu-
ed function of the phase coordinates and of time t, and ¢ (#) and @ (z, t)are (n Xm)-
and (mxn) - matrices whose elements dependon ¢ and on (z, t), respectively, The re-
quirements on the functions b (z, £), & () and @ (z, ) are given indetail below.
Here we merely note that these functions are always assumed to be such that a unique
solution z (¢) of the stochastic Eq. (1.1) exists for ¢ > %o, satisfying the condit-
ion x (to) = z, and understood in at least the weak sense (see [1]),

The problem is to find a vector-valued control function ¥ with values in some
closed bounded domain U, that would ensure the minimum of a certain performance
index of the system (the optimality criterion), which we take in the form

T

Tu(®) =M {§ oz (@), w@)dt + ¥ @ (T)) -9

0

Here M denotes the mean, [0, T'] is the time interval on which the system's opera-
tion is to be analyzed, and ; and { are scalar penalty functions whose actual
forms are determined by the nature of the problem being solved (see below for the
requirements on @, and ¢ ). The unkown vector-valued function u* minimizing
(1.2) must at each instant £ be expressed in terms of the current values of the phase
coordinate vector and of time ¢ , i.e., u* = u* (¢, z (t))(the synethesis proflem).
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According to the dynamic programming method [2] the solving of the problem
posed is equivalent to solving the Bellman equation which for system (1. 1) and criter-
ion (1. 2} has the form [3]

oF 7 oF 1 - - aF 1
— = (@, )+ - Tr (a(:z:, L SR

. oF
min joyr{x, u ule? (¢ ——-—}
min [0 (2, 2) + 7" (1) 37

In writing (1. 3) it is assumed that all the stochastic integrals are understood in 1to's
sense, that the operator 3 / 9z is a column vector with components (@ / dzy, . . .,

8 | 8z,), and that the superseript T denotes transposition, The function F (hence-
forth called the loss function) characterizes the operating performance of the optimal
system and by definition equals

T
F(z, t) zﬁgb M{[§o1(z), u@) ds + 9 (= @N]]2(0) = =} (1.9
st t

Here M {(-) |z () = %} denotes the averaging of (-) over all possible realizations
of the controlled random process z (s) (s >>» ¢), starting from point £ when § = ¢,
From (1. 4) it follows that

Fz, T)=1v() (1.5
Reversing time by means of the substitution T = T — £, Eq, (1.3) and condition
(1.5) for function F (z, T) are transformed to

LF = — min [m, (z, u) + uTcT -%E—} (1.8)
=1 o

a a -z
= + b (JJ, T) -'5;:' + 4y (x’ Tf) aziaz}-

bi(z, ) =b;(z, T —1), c(x)=¢&(T —7)
F(z,0) =9 (2) (1.7

Here a;; (z, T) is a general element of matrix Y, @ (2, T — 1)-a7 (z, T — );
summation from 1 to n is assumed over repeated indices. Taking the quantity 3F /
Az as known and carrying out the minimization in (1. 6), we have

LF = @, (z, T, 3F / 9%) (1.8)

The function
u* = ¢ (z, 7, 9F / 0x) (1.9)

obtained here, satisfying the condition

ar

. aF
o ] = - 0 {Z, @)“‘PTCT oz

— min [m; (x, u) + uTe”

uezl)
(s )
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solves the synthesis problem (after Eq. (1.8) has been solved). The forms of functions
® and ¢ depend on ®; and on domain U.

Example 1. Let o (z, u) = o (z)+uTBu, where B is a positive-defin-
ite (m X m)-matrix for any ze E, and T [0, T]. Controls # are not bound-
ed (U= Ep). Then (B-! is the matrix inverse to B)

1 5 OF 1 9F ¢ OF
¢=—-5 B 2, 01==—-0)(s)+'2‘5;7ch‘1c e

Example 2. Let o, (z, u) = o (z) and U be an m -dimensional parall-

elepiped: lu; | < W i=1,..., m, In thiscase[4]

l'T-_—

. aF
<p-—..»-—{u01,...,um}slgn(cr—a;—), tD,:-—m(z)—{»uoT, s

where sign 4 and |4 | are matrices formed from 4 by replacing a;; by sign ay;
and by | @ij| and {#o, . .., uem} is a diagonal matrix,

Example 3. Let @;(z,u) = o (z) and U be an m ~dimensional sphere of
radius R . Then

oF 1 oF B8F \=/2 oF OF \1/2
o BT e [ 0T e - A i
@ = — Re 3 (azT e’ == ) , Qo= m(z)+3(aj,cc 6::)

2 Successive approximations, If the matrix @ (z,¢) in(lL1)
is nonsingular for any (z, ¢) & E, X [0, T], then the Bellman Eq, (1.8) is a para-
bolic semilinear inhomogeneous equation. We rewrite it as

LF = —o (z) + ® (z, 1, 0F /| 8z), F (z,0) =¥ () 2.1

We shall seek the solution by the method of successiveapproximations(Picard's method;
see [5]), found recurrently by the following scheme:

LFy = o (x), Fq(z,0) =1 (v) (2.2
LFyy = —o () + @ (z, 1, Fy / 82), Frny (2, 0) =¥ (2) (2.3)
N =041, ..
Here, simultaneously with the functions Fy, F, ... we find the functions
ug(z,t) =9z, ,8Fy/02), N=0,1,2, .. (2.4)

which permit us to synthesize systems close to optimal. Such a method of approximate
synthesis has already been used repeatedly, beginning with [6,7], Control problems
for forces small in magnitude were examined in [7], Such systems were later called
weakly controllable [8], In this case the nonlinear summand in the Bellman equation
contains a small parameter @ = e®, which allows us to stay with low order approx-
imations for the synthesis, Error estimates of the method are shown in [9].

The present paper's purpose is to establish convergence conditions for procedure
(2. 3) when the nonlinear term @ is not small, In this case the suboptimal system syn-
thesized on the basis of (2.4) can turn out to be near-optimal only for large [V ; there-
fore, the need arises to investigate the asymptotic behavior of Fy(Z, T) and uy(z, T)
as /N — oo, Such an investigation was made in [6] for a bounded phase space, using
the maximum principle for the solutions of parabolic equations with bounded norm,
Below we use estimates of the fundamental solution in unbounded dormains, enabling
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us to establish the convergence of pwceduxe (23 ) as N —- oo for solutions F (z, 1)
growing unboundedly as kg) = (2} + ... + z)r > 00 .
3, Investigation of convergence, WeconsideranEq, (2.1
in which operator L is defined in (1.6). Its solution F (z, t)and the coefficients
a;; (¢, T) and b; (x, T) of operator L are defined in domain Q = E, X [0,
Ti= {(z, 1) r & E,, 0 < 7 < T}. We take it that everywhere in { the matrix
la;; (x, ©)| satisfles the condition of uniform parabolicity of L, i.e., everywhere
in &, for any real vector X

MiPP<ylalmvx<i|xp (3.2

where A and A are some positive constants, We assume, in addition, that a,; (2, 1)
and b; (z, 7) are functions bounded in Q , satisfying the conditions

[a (@, 7) — a2, 1) [ <A |z —2° [ (3.9

[bi(e, O —bi (2 | << Alz—2F, 0<a<1, A= const
everywhere in Q, We take it that the functions @, P and @ are continuous in Q
and that © and ¥ are bounded in growth as |z | — oo

l (] (.T:) ‘ < Kleh!x[’ “p (x)‘ < Klehfxg (3.3)
( h is some positive constant), while the function @ (z, 1, v) satisfies a Lipschitz
condition in variable v == (vy, . . ., v,) uniformly with respect to (z, t) & Q and
ve E,

[ @z, v, 0) =Dz 1, <K |v—?), D(z,7,0 =0 3.9

(in particular, the functions @ in Examples 2 and 3 satisfy condition (3, 4) if the coeff-
icients of matrix ¢ are bounded in Q).

The following three results, stemming from the asumptions made, are well known
{10}

1) The unique fundamental solution G (Z, T; 7, 0) of the linear Eqs. (2.2) and
(2.3) exists. It is defined forall (z, 7) = Q and (n, 0) & Q (v > 0), satisfies
the homogeneous equation LG = ( (with respect to variables {Z, 7)) and possesses
the property

lim SG(w» v, 0) F(m) dn =  (2) .5

sy
for any continuous function f {z) having a majorant (here ) is from (3. 1))
£ ()| < const-exp (B |z f), k< (3.6)

2) The solutions of inhomogeneous Egs, (2.2) and (2.3) are expressed in terms of
G (xy T; "l. 0) 1.7
Fo(z, 1) = S G(z, v m, 0)p(n)dn + | do S Gz, v;m0)e(mdn (3.7
E, 9 E,
T
Fr )= § Gl Obmdnt jao{c@manax o
0 n

n
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(o= (n. 0, =) an

(formula (3. 7) is unconditionally valid by virtue of (3. 3); (3. 8) is true only under the
condition that an inequality of type (3.3) (or, at least, (3. 6)) is fulfilled for the der-
ivatives dFy / dx;, which, as shown below, does obtain). The solutions Fy (N =
0,1, ...) are twice continwusly differentiable with respect to variable z , and the
derivatives 0Fy / 8z; and 0°Fy / 8z;0z; can be computed by differentiating the
right— hand sides of (3,7) and (3, 8) under the integral sign.
3) The following inequalities are valid (for any A << A from (8.1)):

6@ 75 m,0)| < Kalr —o)/2oxp [ — Al2=18] .
4G (z, v; m, |z —
(za:i n, 6) < Ks (T —_— o)—(’n+1)/2 exp [—- H ] (3. 10)

Results 1)-3) are valid for the linear equations of successive approximations (2. 2)
and (2,3). Retuming now to the original nonlinear Bellman Eq. (2. 1) and to the synth-
esis problem, we look at two stages of the solving of the general problem, First, using
the majorant bounds  (3.9) and (3. 10) for the fundamental solution we prove the
convergence as NV — oo of the successive approximations Fy (z, 1) determined from
(2. 2) and(2. 3), to the solution of the Bellman Eq. (2. 1)(the existence and the uniqueness
of thesolutionof (2.1)canbe provedsimultaneously). After this we show that the sub-
optimal systems constructed in conformity with control laws (2, 4) are equivalent, asy-
mptotically as NV — oo , to the optimal system.

1°, First of all we prove theuniform-convergence of the sequence of functions Fy
(z, t), Fy (z, T), . . ., determined by the recurrence formulas (3. 7) and (3, 8), as well
as of their partial derivatives gFy(z, 1) / 0z; (N = 0,1,2, ...). To do this we
form the differences

T
On =Fnu(x, 7)—Fn(z, 1) = S do S G(z, 3 m, 0) X (8.1
s E,
aFN_l) / aFN)]
[d) (ns g, n -0 (na g, —a"n_ d"l
0Qy OFy, OFy q 3G (z, T; , 0)
oz, — Oz, - _5—4:: = Sdc S oz, X (3.12)

1

o (v 232) 000 22

(in the latter formulas we can take N =0,1,2,. . ., if we agree that dF_, / 3z; =
0). Using(8.4), for(3.11) and (3. 12) we have the inequalities

dy (8.13)

|0n @ ) <K {do § |6 7im, )| B0 @2
0 En
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0Qy_y (m; 9) |
| dn (3.14)

aQN (z’ 1")
6zi

T
- G (z, T; n, 9)
<K, 08 do LS ! x

Formulas (3, 13), (3.14) and (3. 9), (3. 10) enable us to find bounds for the differences
(3.11) and (3.12) recurrently, For this it is necessary only to estimate | dF, / dz, |.
Here a bound of type (3, 3) is valid, i.e.

%%2 < Kehixl (3.15)

Indeed, since when A >0
-n/2 A
e jﬂxp[—',-n’+hlnl]dn<1f. (3.16)

n
for the derivative dF,/ dz; we obtain, with due regard to(3,3), (3.7), (3.9) and

(3.10),
OF,
£

T
- AMz—np
SaazS (v — 6)~(™)/% exp [—-'—r_-z;—-}— hlnl] dn} <
0 n
K;K;K‘ (T—‘l/’ + 21'1/’) eh‘xl

- A
<K,K,{§ 1'(""'1)/2exp[—--T—[:c—m’-{-h['ql]dq-{- (8.17)

n

Acting analogously and keeping in mind the inequality
oF O | oF
o l 0
| v IS 2‘ o l
o P N;
and (3,4), from (3.12) and (3. 17) we obtain

T

2 : ,

ag: < nK KK3K, S ds S (v — o)y D2 (57 259
] E,

_Mf_'.'.ﬂf_ h d K KaKEK2eM =
exp| — =5 — Fhln||dN<nK KKK e (1 + 1)

whence, by vitue of the boundedness of ¥ , we arrive at (3, 15) .
Using (3. 15) and applying formulas (3. 13) and (3, 14) repeatedly, we can obtain
the following bounds for differences (3.11) and (3, 12) for an arbitrary number N>1
(T (+) is the gamma-~function):
K EN(N+1)/2
s hix|
|QN(x’T)|<VEr« +1)[ +1)e 1)

aQN (3 ’ T)
oz;

K = VW nK:K K, (3.18)

RVeN /2

<K I PUE] (3.19)

Formulas (3. 18) and (3. 19) are proved by induction on N. The estimates obtained
show that the sequences of functions
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Fy(z, ) =Felz,v) + Qo 2, T)+ ... +0nxiz, 7) (3.20)
8Fn(z, 1) | 82y = 0F, (z, 1) / 0z; + 0Q, (x,7) / 0z; + ... (3.21)
QN1 (2, T) / Oy

converge to some limit functions
F(z,")=limFy(z, 1), W;(z, 1) ==A1rim BF y (z, )] 0x;
Nesoo 00

Uniform convergence in any bounded region in & obtains for the partial sums of the
series in the right hand side of (3, 20), while in (3, 21) only the sums of the summands
beginning with the second converge uniformly, The first summand, according to(3, 17)
is majorized by a function having a singularity at T = 0. However, it is easy to see
that this singularity is integrable and, therefore, we can pass to the limit in (3. 3) and
in the formula obtained by differentiating (3.8) with respect to Ti. As 2 result we
obtain

Fz,o) = G um, 0)xp(q)dq+gdc S G (z, 7 1, 0) X
E,
o () — P, o, W (n, o)ldn

Wi o) = § g dn (a0 § = 1ot =0, 0, Win,c)ldn

n ¢ n

whence it follows that Wi(z, 7) = 0F (z, 1) /dz; (i = 1,2, .. ., n), and, con-
sequently, the limit function F (z, T) satisfies the equation

F(z,7)= 1§ Gz, ;M 0)9 (m)dn + (3.22)

.
Sda S G(z, T; m, 0) [m(n)-—- @ (n, o, ﬁ:%’-ﬂ)} dn
o E,
which is equivalent to the original Bellman Eq, (2. 1), as is easily verified by a
differentiation with the use of (3. 5).

Thus, we have proved the existence of a solution of Eq. (2,1). From the proof it
follows that the solution F (%, T) and its derivatives 8F / 8z; have the majorants

|7 (z, 1) | < Kseh,

8F g: 1) < Kyr-ehisl (8.23)
1

everywhere in Q. Using (3,23) we can prove the uniqueness of the solution of (2. 1),
Indeed, admitting the existence of two solutions F; and F, of Eq. (2.1) (or (3. 23)),
for the difference V = F, — F, we obtain the equation

k3
Viz, 1) = S ds S Gz, vy 6)[‘1’ (ﬂs "r%%) --(D(m 5’%?')]“

0 n



12 G. E. Kolosov

which with due regard to (3, 4) allows us to write

Cog 3V (n, 5)
jV (=, V)I<K2Sd6 5 G(z, T M, S)IT'dn
o E

n

whence by argumeants analogous to those above for functions Fy it is easy to obtain
the following bound for the difference V= F, — F; :

/2

TN ~t/3,h
IV (@ )| < KRN el qomrms

valid for any N. Hence it follows that V(z,7) =0, i.e., F, (z,7) = Fy(z,7).
Thus we have proved that the succestive approximations F, (z, 1), F; (z, ©), . . .,
determined by the recurrence formulas (2,2) and (2.3), converge, asymptotically as
N - o0 , to the solution of the Bellman Eq. (2.1), which exists and is unique,
2° . We tum to the synthesis problem, Above, for the synthesis of the control

system we suggested the use of functions Un (T, T) defined by (2.4). By Hn(z, 7)
we denote functional (1. 2) computed on the trajectories of system (1. 1), passing throu-
gh point z at instant ¢ = T’ — T under control 4 = Uy (it is implicit that the
lower bound of the integral in the right-hand side of (1. 2) equals ¢ ). Function Hy
(z, T) determines the performance of control uy (z, T). It satisfies the linear equat-
ion

LHy = — (z) — uncToHy | 0z, Hn(z, 0) = ¥ (z) (3.24)
With due regard to the inequality—-uz{'cT 0Fy / 0z = @ (z, v, 6F y/dz), from(2.3)
and (3. 24) it follows that the difference An(z, ©) = Fn(z, 1) — Hy (z, 1) satisfies
the equation

LNAN- = LAN + uNTcT'aAN/ax =@ (.’L', T, 6FN_1 / 0x) — (3.25)

(D(x, T, aFN/a.'L‘) Ax(z,0) =0

Since for large N the right hand side of (3. 25) is small (see (3.4) and (3.19))

oF OF 5
1) (:r:, 7, -&ﬁ) — tD(z, T, ——d%—-l-)

nKKzKN'lT(N‘l)/‘Z
EN="T(V¥D72

L eyehis! (3.26)

and since the initial conditions are zero, we can expect that the difference Ay (z, 1),
as a solution of Eq, (3.25), is of the same order, i.e.,

[Ax (2, ©) | < ey Kq'ehl=l (3.27)

When (as in Example 3) the functions uy(z, T) are bounded and smooth, ensuring the
Holder — comtinuity of the coefficients of operator Ly, the operator Ly, just as
both L and the inequality (3.27), is an elementary consequence of formulas (3.7),
(3.9) and (3.26). If, however, the un(Z, T) are discontinuous functions (but with-
out singularities, e.g., such as those in Example 2), then inequality (3. 27) follows

from Theorem 2 in [11].
From the convergence of series (3. 20) it follows that | F (<, ) — Fy(z, v <
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en Ks e=l (ey —0 as N — o0), whence with due regard to the inequality
| F — Hy|<|F—Fn|+|Fy— Hy| we finally obtain

| F (z,7) — Hy (z, 7) | < enKee"™ (3.28)
(ex = max (e, &n), K¢ = max (K;, Kg))

Formula (3. 28) proves the asymptotic (as /V —» oo) optimality of the sub-optimal syst-
ems constructed with the use of control laws uy (z, T) computed by the recurrence
formulas (2. 2) ~ (2.4).

Note 1, If the coefficients of operator L are not bounded in Q, then, in
general, bounds (3. 9) and (3. 10) are false, However, it can happen that in this case
the problem admits of reduction to the case considered above by a certain change of
variables, If, for instance, the coefficients b;(z, ¢) in (1,1) depend linearly on =z
(i.e., vector b (z, t) = B(t)z, where B (t) is an (n X n)- matrix depending only on

t ), then the change of variables y = Z-1 (¢, 1) z (Z (¢, t,) is the fundamental mat-
rix of system z" = B (t)r) eliminates the unbounded coefficients in operator L ( in
the new variables y), which permits us to investigate such systems by the methods in
Sect, 3.

Note 2, The condition of uniform Lipschitz — continuity (3.4), used in the
calculations in Sect, 3, is not fulfilled for the function @ (z, 7, 6F / 6z) of Example
1 (where instead of (3, 4) we have

@ (2,7, 0) — D (2,7, ) | < K |v—1°|?)
It can be shown that in this case the arguments made in Sect, 3 are not vioclated if the
restriction (3, 9) on the growth of functions ® and ¢ is replaced by the requirement
lo-@ |, [b @) | < Ko+ K|z |

Example 4. We illustrate the effectiveness of the proposed method by ex-
ample of a one~dimensional control problem for which the exaet solution is known.
Let the control system be described by the scalar equation

r=u+E@), MEMEQ@E— 1) = ab (1), u = [a, B]
(5 (1) is the delta-functions and the poiat u = 0. is located inside the segment (<, Bl).
In this case the Bellman Eq. (1, 3) has the form (P (z) = 0)

ar (2) + . '8F]laa2F Flz.0)=0

==z min ju—5— —— ——— L, 0=

ot wetaTe * 5 | T 75z FGEO
It was solved in [12], Here we restrict our consideration to the symmetric problem
when @(z) is an even function having a minimum at =0 and v=0 is the mid-
point of segment [a, ], i.e., a =—u, and B = uy In this case the optimal con-
trol is u*= —u,signz, and the solution F(x, ) of the Bellman equation is an even
function of z and for z > 0 is determined by the formula [12]

oo

ds * g 1g?
Fz,v= msco(v)exp[-;(z—p)-q-—zzs]x
0 0

{exp [-211—5(”'— P«)zil -+ exp [-—‘%5(1 + p)z} o
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: 1 )
Sexp [—5;5(14— u+v)z+-f',;°—\’]d\’}du
0

2uy
a

Turning to the calculation of the successive approximations, we note that ali the funct-
ions Fo, Fy, ... are even in the variable . Therefore, any approximate control(2.4)
coincides with the optimal »* and the method’s effectiveness can be evaluated from
the deviation of the successive approximations F,, F,, . . . from the exact solution,
Selecting a quadratic penalty function w(r) = z?, for the firsttwo approximations we
obtain the expressions
T d + 5 -
Foe = \ ey ) Wee - iy | e e

(r—9)

—_—

T +oo
Y s ds z—-

Fute 9 =Fo = 2\ e § e fomp [~ 55t
v

Figure 1 shows the functions F,, F; and F computed for u,=a=1=1 We

see that N
| F(x)—Fo(z)
mas LG @]

x

| F(2)— Fy(2)
m:‘x———ﬁa-l——" = 0.2

i.e., even the second approximation yields a satis-
factory approximation to the exact solution. The ex-
ample congidered shows that the actual convergence
of the successive approximations to the solution of the
RR/F £ Bellman equation can take place more rapidly than
f , the theoretical one which is estimated by formulas

/ (3.18) and (3.20). This face is a consegquence of

the grossness of the bounds (3. 9) and (3. 10) of the fun-
|  damental solntion, on which we have based the proof
il

tr

of the convergence of the method of successive approx-
imations in Sect. 3.

Fi The author thanks V,B., Kolmanovskii for discuss-
ig. 1
ing the paper's results.
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